IEEE-SA EIP @ ATW November, 2021 Shrikant Acharya CTO, Excelfore Martin Bornemann Director Advanced Architecture, Aptiv

USE OF TSN FOR WHEEL SENSOR DATA IN A ZONAL ARCHITECTURE

Advanced Architecture Challenges

EXISTING ARCHITECTURES ARE NOT SUSTAINABLE IN A FUTURE OF CONNECTED AND AUTONOMOUS CARS

COMPLEXITY

100+ controllers with many different variants running 200M+ lines of code that supports thousands of interdependent functions spread across multiple ECUs

LABOR COST

Direct manufacturing labor rates expected to increase 25% to 50%+ depending on location over next 5 years, but current designs do not support automation required to offset

Labor Distribution On Today's Wire Harness Designs TODAY BEST CASE Automatable With Today's Designs

QUALITY OF SERVICE

Connectivity solutions demanding high bandwidth, fault tolerant vehicle networks operating on miniaturized hardware with increased wire density

AUTOMATED DRIVING

Driver out of the loop functionality (L3 and above) will require fail-safe operational performance, but redundancy is not an option despite due to cost or physical space

Zonal Architecture Objectives and Design Philosophy

Architecture Objectives

SIMPLIFY More Function in Fewer Boxes

UNITE Diverse Applications Across the Full Vehicle Lifecycle

EMPOWER OEMs to Fully Control the User Experience of Their Vehicles

Design Philosophy

ABSTRACT Software From Hardware

SEPARATE Input / Output From Compute

ENABLE "Serverization" of Compute

Multi-Layer Zonal Based Architecture

Zonal Architecture

Functions

Connectivity

Wireless connectivity, Edge and Cloud Services

Central Compute

Body & Power, Network, Gateway, ADAS/AD, Infotainment

Vehicle Motion

Braking, Steering, Dampers and Engine applications

Zone Controller

I/O Abstraction, Data aggregation, Power Supply, Body functions

SENSORS / ACTUATORS

Radar, Lidar, Camera and Ultrasonic sensors, direct controlled sensors, actuators or ECUs (e.g. door modules, seat controller)

Wheel Speed Sensors in Current ABS/ESP Systems

- ABS/ESP Systems Include Several Sensors
 - Wheel Speed, Steering Angle, Yaw Rate, 3D Acceleration
- Wheel Speed Sensors on Each Wheel:
 - Generating a fixed number of electrical pulses per rotation
 - Sensor data is time critical, maximal allowed delay is <1ms
 - Currently ALL wheel speed sensors connect DIRECTLY to the ABS/ESP ECU

Wheel Speed Sensing in a Zonal Architecture

		0	1	2	3	4	1	5	6	1	1		9	0	t	2	3	4	6	1	6	1	ð	9	1	2	1	2	3	4		5	6	7	8	9	3	1
é GVG	00	保護	233		j,	ιb	9P	()	22	40	9	ł	W	W.	91.5	ľ,	1	9	Ņ	1			10	() (194	ņ	10		1	Ι	,		N	141	ei.		,	3
SRP an D	94 00								2										ale i	1	v	1																
Time	12		_					_			1							11	Ņ	η	нħ	нtр																
iy info	16										1							, 9	iter	44)	ŗ,İ	do,								1								
et info	20						53	941	Ņ	ųų,	ju	ąĮ	1 (0	çivi	6)			,		Τ						ę	nçik.	κø	,14	qú	k,	j.u	idi	(
eykoad	24)air	160	кá	pr	900	ol h	100	το3 ίr, β	n_d roto	(15) (CO	101	ayik Iyik)	44 44	5111	va	641	i ty	pri	100	10()								

- Wheel Speed Sensors Provide a Digital Signal:
 - Vehicle speed can be calculated from the distance of two consecutive pulses
 - Number of pulses per wheel turn is always constant
- Ethernet Based Network Connects Zonal Controllers to Central Compute Nodes
 - Ethernet TSN is mandatory (time critical applications and network redundancy)
 - Concept: One Ethernet Data Packet on Each Rising Edge of Each Wheel Speed Sensor Pulse
 - IEEE 1722 data packets because of small protocol overhead
 - Wheel pulse packet payload:
 - 32bit Ethernet TSN timer value at the rising edge of the wheel pulse
 - 8bit Sensor number
 - 28 Pulses per wheel turn \rightarrow 200Kph < 1KHz

Wheel Speed Sensing in a Zonal Architecture

Wheel Speed Sensing System Concept

Four Asynchronous Talkers, Two Hops to Listener, Plus Side Traffic

Test System Setup

Four Asynchronous Talker Streams, Two Hops to Listener, Plus Side Traffic

Test System Setup

- Main Requirement Wheel Speed Sensing: <1ms Transport Delay to the Vehicle Motion Node
- Test Setup:
 - Zone Controller with S32K148 + Ethernet Switch SJA1105 (NXP): μC creates an IEEE1722 packet on Each Wheel Pulse
 - Priority = 2 (Highest Priority) Using 802.1Qav (FQTSS) Credit-Based Shaper
 - Payload = 32bit TSN Timer Value + 8bit Sensor Number
 - Zone Controller Emulator: PC creates 3 additional IEEE1722 streams (Priority = 2) to emulate multiple Zone Controllers
 - Load Generator, connected via 100MBit/s Ethernet port to the switch: Generating 100Mbps stream of lower priority (Priority = 0) traffic
 - Central controller with SoC S32G274 + Ethernet Switch SJA1105: S32G SoC receives 1722 packets and adds second Ethernet TSN time stamp, statistic analysis on a PC, comparing first and second TSN time stamp values in each 1722 packet

excelfore • A P

- S32G board also generates a digital pulse for each packet it receives
- Each wheel pulse and the generated pulse from the S32G visualized on the logic analyzer to compare with statistical analysis, to verify no significant delays from packet assembly and parsing

Test Setup

/excelfore • APTIV•

Test Results with No Side Traffic

25000

WS2 125000

- WS1 Signal is the True Use Case / is the Superior Set-up
- WS2 4 are Proxy Signals Generated by Single PC Show Wider Timing Variance
- In All Cases Total Latency < 85µSec
 - Use of TSN for Wheel Sensor Data in a Zonal Architecture 12

excelfore • A P

Stream Files Verified by Scoping the Pulses

14 Use of TSN for Wheel Sensor Data in a Zonal Architecture

Test Results with Side Traffic, No Traffic Shaping

Analysis of Test Results

Credit-Based Shaper P2 / No Side Traffic

With Credit-Based Shaper:

- Critical signals are not impacted by side-traffic
- P2 traffic will not be pushed from Queue so long as class is guaranteed sufficient bandwidth

Without Credit-Based Shaper:

- If total network bandwidth exceeds traffic by wide margin, critical timing will be met
- BUT timing is not deterministic as side-traffic expands the spread, can overrun the Queue

Credit-Based Shaper P2 / Side Traffic

 14.00

 28.00

 28.00

 56.00

 70.00

 112.00

 112.00

 112.00

 112.00

 112.00

 112.00

 112.00

 112.00

 238.00

 238.00

 238.00

 238.00

 238.00

 238.00

No Credit-Based Shaper P2

WS1

100000

75000

50000

25000

Vexcelfore • APTIV

Conclusions

- We Tested the Efficacy of Wheel Speed Sensors Signals Routed over TSN via a Zone Controller
- Conclusion:
 - Testing shows clear effectiveness of FQTSS Credit-Based Shaper regardless of side-traffic
 - 1Khz signal: 1Gbps TSN Network using Credit-Based Shaper (802.1Qav) is sufficient
 - Requirement on wheel speed sensing of <1ms latency is achieved under all test conditions
- Indications: (should be confirmed with further testing)
 - 1Khz signal: 100Mbps TSN Network with Credit-Based Shaper should be sufficient
 - Up to 4Khz signal: 1Gbps TSN Network with Credit-Based Shaper should be sufficient
 - TSN Network with Credit-Based Shaper should be sufficient provided that the bandwidth reserved for the priority class is greater than the traffic of the priority class, regardless of side traffic
- Up-Integration of Wheel Speed Signals into the Zone Controllers Offers Potential for Positive Effects to the System Architecture and Will Improve Harness Automation

• A P T I V •